Consider the data collected by a hypothetical video store for 50 regul การแปล - Consider the data collected by a hypothetical video store for 50 regul โครเอเชีย วิธีการพูด

Consider the data collected by a hy

Consider the data collected by a hypothetical video store for 50 regular customers. This data consists of a table which, for each customer, records the following attributes: Gender, Income, Age, Rentals (total number of video rentals in the past year), Avg. per visit (average number of video rentals per visit during the past year), Incidentals (whether the customer tends to buy incidental items such as refreshments when renting a video), and Genre (the customer's preferred movie genre). This data is available as an Excel spreadsheet.

Perform each of the following data preparation tasks:
a. Use smoothing by bin means to smooth the values of the Age attribute. Use a bin depth of 4.
b. Use min-max normalization to transform the values of the Income attribute onto the range [0.0-1.0].
c. Use z-score normalization to standardize the values of the Rentals attribute.
d. Discretize the (original) Income attribute based on the following categories: High = 60K+; Mid = 25K-59K; Low = less than $25K.
e. Convert the original data (not the results of parts a-d) into the standard spreadsheet format (note that this requires that you create, for every categorical attribute, additional attributes corresponding to values of that categorical attribute; numerical attributes in the original data remain unchanged).
f. Using the standardized data set (from part e), perform basic correlation analysis among the attributes. Discuss your results by indicating any strong correlations (positive or negative) among pairs of attributes. You need to construct a complete Correlation Matrix (Please read the document Basic Correlation Analysis for more detail and an example). Can you observe any "significant" patterns among groups of two or more variables? Explain.
g. Perform a cross-tabulation of the two "gender" variables versus the three "genre" variables. Show this as a 2 x 3 table with entries representing the total counts. Then, use a graph or chart that provides the best visualization of the relationships between these sets of variables. See Slide 41 in Lecture 2 for an example. Also review Chapter 4 of Berry and Linoff. Can you draw any significant conclusions?
h. Select all "good" customers with a high value for the Rentals attribute ( a "good customer is defined as one with a Rentals value of greater than or equal to 30). Then, create a summary (e.g., using means, medians, and/or other statistics) of the selected data with respect to all other attributes. Can you observe any significant patterns that characterize this segment of customers? Explain. Note: to know whether your observed patterns in the target group are significant, you need to compare them with the general population using the same metrics.
i. Suppose that because of the high profit margin, the store would like to increase the sales of incidentals. Based on your observations in previous parts discuss how this could be accomplished (e.g., should customers with specific characteristics be targeted? Should certain types of movies be preferred? Etc.). Explain your answer based on your analysis of the data.
j. Use WEKA to perform the following tasks on the original data set (use the Comma Separated version of the above data set: Video_Store.csv). Load the data into WEKA Explorer (the Preprocessing module). Remove the Customer ID attribute. Review basic statistics for different attributes by clicking on the name of each one in "attribute" panel. Next, use the unsupervised attribute "Discretize" filter to discretize the Age attribute. Finally, use the unsupervised attribute "Normalize" filter to convert all of the remaining numerical attribute into [0,1] scale. Save the resulting data set into an ARFF formatted file and submit with your answers for the above questions.

Note: You can give the final results of parts (a) through (d) as a single table which includes the original data and has an added column for each of the parts (a) through (d). The results of part (e) should be a separate table. For the correlation analysis (part f) give your correlation matrix (rows and columns of the matrix are the attributes, and entries would represent correlation value for a pair of attributes (e.g., "Income" versus "Age"). Your analyses for various parts can be added to the same spreadsheet file, or it could be included in another document (e.g., an MS Word file). Please create a single ZIP archive for all your documents and submit via Facebook.


0/5000
จาก: -
เป็น: -
ผลลัพธ์ (โครเอเชีย) 1: [สำเนา]
คัดลอก!
Razmislite datum prikupljaju se hipotetski videoteci za 50 Redovno customersâ. Ovaj datum se sastoji od stola qual, za svakog kupca, bilježi slijedeće atribute: Spol, dohodak, dob, iznajmljivanje (ukupan broj video ljetovanje u posljednjih godinu dana), AVG. po posjetu (prosječan broj video najamnina po posjetu tijekom protekle godine), za slučaj (bilo Kupac ima tendenciju da kupi stvari Sucha slučajne ili kada mijenjate osvježenje iznajmljivanja video), a Žanr (Klijenta igraca filmski žanr). Ovaj datum je dostupna i Excel proračunske tablice. Učinite svaki od sljedećih datuma Priprema zadataka: . Koristite zaglađivanje Bin Sredstva za glatke uzavrelog na dob atributa. Koristite dubinu bin od 4. b. Koristite min-max normalizacija transformaciji uzavrelog o dobiti atribut na području [0.0-1.0]. c. Koristite z-score normalizaciju na STANDARDIZACIJA kuhalo od iznajmljivanja atribut. d. Discretize se (izvorni) Porez atribut na temelju sljedećih kategorija: Visoki = 60K +; Mid = 25K-59K; Niska = manje od 25K $. . Pretvorite izvorni datum (a ne rezultati dijelova AD) u standardni format tablicu (Imajte na umu da to zahtijeva da Stvaranje, Za svaki kategorički atributa, odgovara vrije dodatne atribute tog kategoričan atributa, Numerička atribute u izvornom dana ostati nepromijenjena) . f. Korištenje standardiziranim skupovima podataka (iz dijela), obavljanje osnovne korelacije među atributima. Raspravite svoje rezultate pokazujući snažne korelacije (pozitivne ili negativne) Među parova atributa. Vi trebate izgraditi kompletnu korelacijske matrice (Molimo pročitajte dokument Analiza Osnovni korelacije za detaljnije i primjer). Možete li promatrati bilo "značajan" Patterns među skupinama od dva ili više varijabli? Objasnite. g. Izvođenje unakrsno tabeliranje od dva "roda" tri varijable u odnosu na "Genre" varijabli. Pokaži ovaj ili 2 x 3 stola sa zapisa koji zastupaju ukupno broji. Zatim, koristite grafikon ili dijagram koji pruža najbolju vizualizaciju odnosa između Bingo Bingo seta varijabli. Pogledajte Slide 41 u 2 Predavanje za primjer. Također pregledati poglavlju 4. Berry i Linoff. Možete li povući bilo koji značajan zaključaka? h. Odaberite sve "dobre" customersâ s visokom vrijednosti za iznajmljivanje atributa ("dobar Kupac se definira kao jedna najamnina s vrijednošću većom od ili jednak 30). Zatim, stvoriti sažetak (npr, korištenje sredstava, medijani, a / ili druge statistike) od odabranih datuma u odnosu na sve druge atribute možete promatrati bilo značajne uzorke koji obilježavaju ovaj segment kupaca Objasnite Napomena:.. da znam da li vaše observed- obrasce u ciljnoj skupini su značajne, morate usporediti Kažem s općom populacijom koristeći iste podatke. ja. suppos da zbog visokih marža profita, trgovine bi željeli povećati prodaju nezgoda. Na temelju svojih zapažanja u prethodnim dijelovima mogao zakleti razgovarati o tome kako to postignuto (npr trebao customersâ Karakteristike specifični EU s ciljanim? Trebam određene vrste filmova EU preferira? itd). Objasnite svoj ​​odgovor na temelju svoje analize podataka. j. Koristite Weka da obavite sljedeće zadatke na izvorni datum set (koristite odvojene zarezom verziju Iznad datum skupa: Video_Store.csv). Stavite datum u Weka Explorer (u predobradi modula). Uklonite korisnički ID atribut. Pregledajte osnovne statistike za različite atribute klikom na naziv svakog onog u "atribut" ploče. Zatim, koristite bez nadzora atribut "Discretize" filtar za discretize dobi atribut. NAPOKON, bez nadzora korištenje atribut "normalizacije" filter pretvoriti sve Preostalo Numerička U atributa [0,1] ljestvici. Spremiti rezultat podatke utvrđene u ARFF formatirane datoteke i predati svoje odgovore za gore pitanja. Napomena: Možete dati konačne rezultate dijelova (a) do (d) ili jedna tablica qual Uključuje izvorni datum te je dodao KOLUMNA za svaki od dijelova (a) do (d). Rezultati dijela (e) bi trebao biti zaseban stol. Za Usporedna analiza (dio f) dati svoj ​​korelacijske matrice (redovi i stupci matrice su atributi, a unosi će predstavljati korelacije vrijednost za par atributa (npr "prihodi" u odnosu na "doba"). Vaš Analiza za Doni Dijelovi mogu biti dodan u istoj datoteke proračunske tablice, ili se mogao zakleti na drugim dokumentom (npr, MS Word datoteka). Molimo stvoriti jednu ZIP arhivu za sve vaše dokumente i poslati putem Facebooka.
















การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2025 I Love Translation. All reserved.

E-mail: